
LOGIC ENCRYPTION

POLYTECHNIC INSTITUTE OF NEW YORK UNIVERSITY

FEBRUARY 2014

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2014-029

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2014-029 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S / / S /
GARRETT S. ROSE MARK H. LINDERMAN,
Work Unit Manager Technical Advisor
 Computing & Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

FEB 2014
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

SEP 2011 – SEP 2013
4. TITLE AND SUBTITLE

LOGIC ENCRYPTION

5a. CONTRACT NUMBER
FA8750-11-2-0274

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788f

6. AUTHOR(S)

Ramesh Karri, Ozgur Sinanoglu, Jeyavihayan Rajendran

5d. PROJECT NUMBER
T2HW

5e. TASK NUMBER
PO

5f. WORK UNIT NUMBER
LY

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Polytechnic Institute of NYU
6 Metrotech Center
Brooklyn, NY 11201

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2014-029
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
Globalization of the integrated circuit (IC) design industry is making it easy for rogue elements in the supply chain to
pirate ICs, overbuild ICs, and insert hardware trojans. Due to supply chain attacks, the IC industry is losing approximately
$4 billion annually. One way to protect ICs from these attacks is to encrypt the design by inserting additional gates such
that correct outputs are produced only when specific inputs are applied to these gates. The state-of-the-art logic
encryption technique inserts gates randomly into the design but does not necessarily ensure that wrong keys corrupt the
outputs. Our technique ensures that wrong keys corrupt the outputs. We relate logic encryption to fault propagation
analysis in IC testing and develop a fault analysis-based logic encryption technique. This technique enables a designer
to controllably corrupt the outputs. Specifically, to maximize the ambiguity for an attacker, this technique targets 50%
Hamming distance between the correct and wrong outputs (ideal case) when a wrong key is applied. Furthermore, this
50% Hamming distance target is achieved using a smaller number of additional gates when compared to random logic
encryption.
15. SUBJECT TERMS
IP Protection, Logic Encryption, Hardware Security

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
GARRETT S. ROSE

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

37

TABLE OF CONTENTS
1. Summary ... 1

2. Introduction ... 1

2.1 Motivation ... 1
2.2 Logic Encryption .. 2
2.3 Contributions .. 4

3. Methods, Assumptions and Procedures .. 4

3.1 Metric for Logic Encryption ... 4
3.2 Motivational Example ... 6
3.3 Fault-Analysis Based Logic Encryption ... 7
3.4 Logic Encryption Using XOR/XNOR Gates .. 9

3.4.1 Fault Impact ... 9
3.4.2 User-defined Key ... 10
3.4.3 Algorithm to Insert XOR/XNORs .. 10

3.5 Logic Encryption Using Multiplexers ... 12
3.5.1 Key Idea ... 12
3.5.2 Fault Analysis-based Insertion of MUXes ... 13
3.5.3 Algorithm to Insert MUXes.. 15

4. Results and Discussions .. 15

4.1 Experimental Setup ... 15
4.2 Hamming Distance Analysis ... 16
4.3 Power, Area and Delay Overhead ... 19
4.4 Can we Insert Key-gates Only at the Outputs? ... 21
4.5 Security Analysis .. 21
4.6 Logic Encryption and PUFs .. 23
4.7 Verification of Logic Encryption Outputs ... 24
4.8 Limitations .. 24

5. Resource-constrained Logic Encryption ... 25

6. Related Work .. 27

7. Conclusions ... 28

8. References ... 29

List of Acronyms .. 31

i

LIST OF FIGURES AND TABLES
Figure 1: An IC design flow enhanced with logic encryption capabilities to thwart IC piracy [6,7].
Before sending the design to an untrusted foundry, the designer encrypts the design using logic
encryption techniques. The foundry then manufactures this encrypted design. On receiving the
encrypted hardware, the IC designer activates it by applying the secret key and the IC is then sold
in the market………………………………………………….……………………………….…….2
Figure 2: A system with an encrypted module…..…………..……………………………………...5
Figure 3: Number of combinations (P) that an attacker has to explore when key size N =128 for
different values of Q. A system with an encrypted module...……………………..………………..6
Figure 4: A circuit encrypted with one XOR-gate (E1). The valid key is
K1=0....……………………………………………………………………………………………...7
Figure 5: Relation between logic encryption and IC testing – (a) fault excitation, (b) propagation,
and (c) masking…………………………………………......…………………………………….. 8
Figure 6: A circuit encrypted with one multiplexer (E1). The false wire is shown as a dotted
line…...……………………….......………………………………………………………………..12
Figure 7: Hamming distance between the outputs of designs on applying the correct key and a
random wrong key: (a) Random insertion of XORs in ISCAS designs [6,7,11], (b) fault
analysis-based insertion of XORs in ISCAS designs, (c) random insertion of XORs in
OpenSPARC [6,7,11], and (d) fault analysis-based insertion of XORs in OpenSPARC units.…..16
Figure 8: Hamming distance between the outputs of designs on applying the correct key and a
random invalid key: (a) Random insertion of MUXes in ISCAS designs, (b) fault analysis-based
insertion of MUXes in ISCAS designs, (c) random insertion of MUXes in OpenSPARC units,
and (d) fault analysis-based insertion of MUXes in OpenSPARC units.…………………………18
Figure 9: Overhead for different logic encryption techniques for a key size that results in a HD
close to 50% (a) Power overhead, (b) Delay overhead, and (c) Area overhead.………………….20
Figure 10: Number of key-gates inserted at the outputs and inside the designs for different fault
analysis-based insertion techniques……………………………………………….……..…….….21
Figure 11: Hamming distance achieved for different insertion mechanisms when the allowed
overhead for logic encryption is 5%. (a) Power constrained, (b) delay constrained, and (c) area
constrained. The numbers on top of the bar shows the number of key-gates inserted....…………25

Table 1: Fault impact value of different nodes in C17 circuit shown in Figure 5 (a)….….......….11
Table 2: Contradiction metric values of different nodes in C17 circuit on selecting G7 as the true
wire……………………………………………….……………........………………………..…..14
Table 3: The best Hamming distance achieved (close to 50% mark) and the number of key-gates
required to achieve that distance for different logic encryption techniques…………...………….18
Table 4: Number of output combinations that an attacker is forced to consider on an
encrypted netlist for various types of key-gates and logic encryption techniques (a) ISCAS
circuits and (b) Open SPARC controllers………………………………………………….…….22

ii

1. SUMMARY

Globalization of the integrated circuit (IC) design industry is making it easy for rogue

elements in the supply chain to pirate ICs, overbuild ICs, and insert hardware trojans. Due to

supply chain attacks, the IC industry is losing approximately $4 billion annually. One way to

protect ICs from these attacks is to encrypt the design by inserting additional gates such that

correct outputs are produced only when specific inputs are applied to these gates. The

state-of-the-art logic encryption technique inserts gates randomly into the design but does not

necessarily ensure that wrong keys corrupt the outputs. Our technique ensures that wrong

keys corrupt the outputs. We relate logic encryption to fault propagation analysis in IC testing

and develop a fault analysis-based logic encryption technique. This technique enables a

designer to controllably corrupt the outputs. Specifically, to maximize the ambiguity for an

attacker, this technique targets 50% Hamming distance between the correct and wrong

outputs (ideal case) when a wrong key is applied. Furthermore, this 50% Hamming distance

target is achieved using a smaller number of additional gates when compared to random logic

encryption.

2. INTRODUCTION

2.1 Motivation

Due to the ever increasing complexity of constructing and/or maintaining a foundry with

advanced fabrication capabilities, many semiconductor companies are becoming fabless. Such

fabless companies design integrated circuits (IC) and send them to an advanced foundry,

which is usually off-shore, for manufacturing. Also, the criticality of time-to-market has

forced companies to buy several IC intellectual property (IP) blocks to use them in their

systems-on-chip. The buyers and sellers of these IP blocks are distributed worldwide.

Globalization of the IC design industry has led to several new kinds of attacks on

hardware. An attacker, anywhere in the design flow, can reverse engineer the functionality of

an IC/IP [1, 2]. He/she can then steal and claim ownership of the IP [3]. An untrusted IC

fabrication company may also overbuild ICs and sell them illegally. Finally, rogue elements

in foundries may insert malicious circuits into the design without the designer’s knowledge

[4]. Due to such attacks, the semiconductor industry loses $4 billion annually [1, 2]. Such

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
1

attacks have led IP and IC designers to re-evaluate trust in hardware [4].

While the IC design flow spans many countries, not all countries have strict laws against

intellectual property theft. As reported in [5], only a few countries such as USA and Japan

have strict laws to protect IC designs against intellectual property theft. Thus, every IC/IP

designer bears an additional responsibility to protect his/her design. If a designer is able to

conceal the functionality of an IC while it passes through the different, potentially

untrustworthy phases of the design flow, these attacks can be thwarted [6, 7]. For this purpose,

researchers have proposed a technique called logic encryption.

2.2 Logic Encryption

Logic encryption1 hides the functionality and the implementation of a design by inserting

some additional gates called key-gates into the original design. In order for the design to

exhibit its correct functionality (produce correct outputs), the valid key has to be supplied to

the encrypted design. Upon applying a wrong key, the encrypted design will exhibit a wrong

functionality (produce wrong outputs).

Logic encryption techniques can thwart an untrusted foundry from illegally copying,

reverse engineering, overproducing the IC design [3,5-8,11,29-31], and Trojan insertion [12].

As shown in Figure 1, the IP provider and the designer are trusted. The foundry is not

trustworthy or there is a rogue element in the foundry. The designer encrypts the modules

IP owner

Packaging

Activation

Untrusted foundryTrusted design regime

IP
owner

Trusted design
regime

Encrypted
netlist

Original
netlist

RTL
netlist

Non-
functional ICGDS II Masks

Layout
generation Fabrication

IC
design

Functional
IC

Market

Figure 1. An IC design flow enhanced with logic encryption capabilities to thwart IC

piracy [6,7]. Before sending the design to an untrusted foundry, the designer encrypts the

design using logic encryption techniques. The foundry then manufactures this encrypted

design. On receiving the encrypted hardware, the IC designer activates it by applying the

secret key and the IC is then sold in the market.

1Logic encryption of a hardware design does not mean encrypting the design file by a
cryptographic algorithm, and rather it means encrypting a design’s functionality. Obfuscation of a
module hides only its functionality but it does not prevent black-box usage [25]. Logic encryption
prevents this black box usage in addition. Hence, we use the term “encryption” and not
“obfuscation.”

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
2

using the proposed technique, synthesizes them using trustworthy computer-aided design

tools, and sends the generated layout masks to the untrustworthy foundry. The key-inputs of

the key-gates are connected to the data lines of a tamper-proof memory. When the designer

sends the encrypted design to the foundry, he does not load the secret key into this memory as

it can be recovered by an attacker in the foundry.

The foundry manufactures the IC and returns them to the designer. The designer then

loads the secret key into the tamper-proof memory and makes the ICs functional. To prevent a

user from reading out the secret key from the memory, the designer removes read/write access

to this memory by blowing out the fuses in the read/write circuit. Furthermore, to prevent an

attacker from reading-out the contents of the memory, it is designed to be tamper-proof. The

designer or a trusted third party performs functional validation and manufacturing testing on

this functional IC. Once they pass these tests, the functional ICs are packaged and sold.

An attacker in the foundry has access to the layout. He can copy the layout and

overproduce the ICs (black-box usage). Alternatively, he can reverse engineer the netlist from

the layout and reuse this netlist. Logic encryption seeks to prevent these attacks by encrypting

all or critical modules in a design. Since the design is encrypted by the designer, the lack of

the secret keys by the foundry renders any copies or overproduced ICs unusable. The attacker

does not have access to good functional input-output pairs (as the design has already been

encrypted previous to his access to the layout). Further, the attacker does not have access to

the RTL and the test vectors. Unlike obfuscation techniques [3,5-8,11,12], logic encryption

protects against black-box usage and reverse engineering.

Though their application may differ depending up on the target attack, any logic

encryption technique should satisfy two criteria [6,7,11,12]: (1) wrong outputs should be

produced on applying a wrong key, and (2) an attacker should not be able to retrieve the

secret key. On inserting a sufficient number of key-gates, it becomes computationally

infeasible for an attacker to determine the secret key. In this work, we propose fault

analysis-based logic encryption to satisfy the first criterion. The proposed technique enables

the designer to controllably corrupt the outputs.

2.3 Contributions

Previously proposed logic encryption techniques insert key-gates at random locations in a

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
3

design [6,7] (Section 8 describes these techniques in detail). We show that when gates are

inserted randomly into the design, a wrong key may not necessarily affect the output as its

effects may not be propagated to the outputs.

We then overcome this problem by relating it to an IC testing scenario where the effect of

a fault may not propagate to the output. Furthermore, we also analyze how fault-analysis

techniques such as fault activation, fault propagation, and fault masking can help perform

stronger logic encryption.

We then leverage traditional IC testing algorithms to perform logic encryption. Our

technique uses conventional fault simulation techniques and tools such as HOPE [10] to guide

key-gate insertion and corrupt the output bits on applying a wrong key.

We also use 2:1 multiplexers (MUXes) as key-gates. We use fault-analysis techniques to

guide MUX insertion.

The proposed techniques are analyzed by comparing the Hamming distance between the

outputs on applying the valid key and a wrong key. The area, power, and delay overhead of

the proposed techniques are reported.

We acknowledge the scenario where a designer has a limited power, delay, or area

overhead budget for logic encryption. Hence, we also analyze the ability to produce wrong

outputs for a given power/delay/area overhead for different logic encryption techniques.

Our work has the following unique features that differentiate it from the previous work:

1. Analyzes logic encryption from IC testing perspective.

2. Uses test principles to relate invalid key-bits to corrupted outputs.

3. The proposed fault-analysis approach is generic as it can be applied to any logic

encryption mechanism.

3. METHODS, ASSUMPTIONS AND PROCEDURES

3.1. Metric for Logic Encryption

The defender (designer) has to prevent his IP from being copied by an attacker in the

foundry and to prevent black-box usage. The attacker does not know the secret key used for

encryption. Hence, he will apply a random key and in turn expect the module to become

functional (i.e. to produce correct outputs). If he is lucky and if the module indeed produces

correct outputs even when a random wrong key is applied, then it benefits him. If he is not

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
4

lucky, the attacker has to try another key combination. Increasing the key-size increases the

effort of an attacker. Thus, the objective of the defender is to make it harder for an attacker to

retrieve the secret key. To make this happen, the defender needs the encrypted design to

produce wrong outputs on applying a wrong key.

To formalize this, consider the system shown in Figure 2. The system has an M-bit input,

N-bit output, and is encrypted with K key bits. These bits are either logic ‘1’ or ‘0’. Let B =

{0,1}. Let x ∈ BM be a functional input. Let y ∈ BN be the correct output. Let c ∈ BK be

the correct key.

A module f encrypted with a key c should behave as follows:

1. On applying the correct key c, the module produces correct outputs for all input

patterns.

f(x,z)|z=c = y ∀ x ∈ BM, y ∈ BN

2. On applying a wrong key, the module produces wrong outputs for all input

patterns.

f(x,z)|z≠c = y’ ∀ x ∈ BM, z ∈ BK, y’∈ BN, where y’ ≠ y.

The Hamming distance between y’ and y (HD(y,y’)) can measure the difference between

a correct output y and the corresponding wrong output y’. If HD(y,y’) = 0, then the outputs of

the encrypted module are correct independent of the applied key. Thus, the corresponding

encryption is weak. If HD(y,y’) = N, then the wrong outputs of the encrypted design are still

correlated to the original outputs, but this time inversely. The corresponding encryption is still

weak and the attacker can obtain the correct output by complementing the output.

A defender has to encrypt the module such that an attacker, with the knowledge of the

publically available logic encryption objectives and algorithms, is not able to obtain the

correct outputs by applying a wrong key. This can be done by minimizing the correlation

between the corrupted and the original outputs, and thus by maximizing the ambiguity for the

attacker. If there are P output-bit combinations that an attacker is forced to consider

Figure 2. A system with an encrypted module.

Encrypted module

Functional input

Output

Key input

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
5

corresponding to every input combination, then larger values of P imply greater ambiguity for

the attacker. Obviously, a defender has to maximize P. This is analogous to traditional

cryptography, where increasing the key-size increases the ambiguity for an attacker.

If Q-out-of-N output bits are wrong (i.e. HD(y,y’) = Q), then P can be computed as �N
Q�.

If Q=0 (i.e. HD(y,y’) = 0), then P = 1; it benefits the attacker. If Q=N (i.e. HD(y,y’) = 0),

then P = 1; it benefits the attacker. P is maximum when Q = N/2 (i.e. when HD(y,y’) = N/2).

Figure 3 plots the number of combinations (P) that an attacker has to consider for key size

N (=128) for different values of Q. P is maximum when Q = 64. Thus, the ambiguity for an

attacker will be maximum when HD(y,y’) = N/2. Hence, the logic encryption technique

should insert key-gates such that the HD between the outputs on applying the correct key and

the wrong key (HD(y,y’)) is N/2, i.e., 50% of the output bits should be corrupted on applying

a wrong key.

 The proposed fault analysis approach enables a designer to have control over the

corruption effects of a logic The proposed fault analysis approach enables a designer to have

control over the corruption effects of a logic encryption technique. Certain designs may

benefit from lower levels of HD (by corrupting certain targeted parts of the design, or targeted

outputs). The proposed fault-analysis approach provides the control needed even in these

situations, thus making the necessary key gate insertions to achieve the targeted corruption.

3.2. Motivational Example

Let us consider the combinational logic encryption technique proposed in [6,7]. In this

technique, XOR/XNOR gates are inserted at random locations. For instance, consider the C17

circuit shown in Figure 4 encrypted with one XOR-gate, E1. This gate is inserted at the output

Figure 3. Number of combinations (P) that an attacker has to explore when key

size N =128 for different values of Q. A system with an encrypted module.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
6

of gate G2 which is part of the original design.

The design will produce the correct output on applying the correct key value, K1 = 0. On

applying a wrong key (K1 = 1), wrong outputs are produced. For example, on applying the

input pattern “01000”, a wrong output “00” is produced instead of the correct output “10”.

Unfortunately, the design produces correct outputs for certain input patterns even on

applying a wrong key. For example, the input pattern “11100” produces the correct output

“11” even with a wrong key applied. In fact, this design produces a wrong output only for

twelve input patterns out of the possible 32 input patterns. In other words, the design produces

correct outputs for 75% (24) of the input patterns despite applying the wrong key. Thus, this

encryption procedure is weak as it does not ensure wrong outputs are produced for wrong

keys, let alone 50% HD criterion. In this work, we propose a technique that will not only

guarantee wrong outputs for wrong keys but also meets 50% HD criterion.

3.3. Fault Analysis-based Logic Encryption

Logic encryption: a fault analysis perspective

 We will now describe our technique to encrypt a design using key-gates (e.g.,

XOR/XNOR) in such a way that any wrong key causes a wrong output. This is similar to the

situation where a circuit produces a wrong output when it has a fault that has been excited and

propagated to the outputs. The following observations relate logic encryption and fault

analysis in IC testing. We will use these observations to insert XOR/XNOR gates.

Fault excitation: Application of a wrong key can be associated with the activation of a

fault. For a wrong key, either a stuck–at–0 (s–a–0) or stuck–at–1 (s–a–1) fault will get excited

when key-gates are used for encryption.

Consider the C17 circuit encrypted with one XOR gate (E1) as shown in Figure 5(b).

I4

I5

I3

I2

I1

O1

O2

K1

G1

G2

G3

G4

G5

G6

G7

G8
E1 G9

G10

Figure 4. A circuit encrypted with one XOR-gate (E1). The valid key is K1=0.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
7

Here, E1 is the key-gate. If a wrong key (K1=1) is applied to the circuit, the value of net B is

the negated value of net A. This is the same as exciting an s-a-0 (when A=1) or s-a-1 (when

A=0) fault at the output of G7 as shown in Figure 5(a). Please note that s-a-0 (s-a-1) fault

activation can be attributed to the case where the net in question is supposed to yield a value

of 1 (0) during the functional mode of operation.

Fault propagation: Not all wrong keys can corrupt the output as the effects of a wrong

key may be blocked for some of the input patterns. This is similar to the scenario where not

all input patterns can propagate the effect of a fault to the output [20].

Consider the circuit shown in Figure 5(b). Let a wrong key (K1 = 1) be applied to the

circuit. For the input pattern 00000, an s–a–0 fault gets excited at the output of E1 and

propagates to both outputs. The value at the output of E1 is 0 instead of 1, and the output is 11

instead of 00.

For the input pattern 01110, even though the s–a–0 fault gets excited at the output of E1,

the output is 11, which is the correct output, as the fault effects have been blocked.

To propagate the effect of an excited fault, in our case the wrong key, non-controlling

values should be applied to the other inputs of the gates that are on the propagation path of the

fault. Since not all input patterns guarantee the non-controlling values on the fault

propagation path, a wrong key will not always corrupt the output.

Fault masking: Inserting a single key-gate and applying a wrong key is equivalent to

exciting a single stuck-at fault. Likewise, inserting multiple key-gates and applying a wrong

key is equivalent to simultaneously exciting multiple stuck-at faults.

However, when multiple faults are excited, they might mask one another. Therefore, in

logic encryption, when multiple key-gates are inserted, the effect of one key-gate might mask

I4

I5

I3

I2

I1

O1

O2

G1

G2

G3

G4

G5

G6

G7

G8
G9

G10

Xstuck-at-0

I4

I5

I3

I2

I1

O1

O2

K1
G1

G2

G3

G4

G5

G6

G7

G8

E1

G9

G10

A

B

I4

I5

I3

I2

I1

O1

O2

K1
G1

G2

G3

G4

G5

G6

G7

G8

E1

G9

G10

E2

E3

K2
K3

 (a) (b) (c)

Figure 5. Relation between logic encryption and IC testing – (a) fault excitation, (b)

propagation, and (c) masking.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
8

the effect of other key-gates.

Consider the encrypted circuit shown in Figure 5(c). When the key bits are 000, the

correct functional output is 00 for the input pattern 00000. However, if the key bits are 111

(wrong key), the effect introduced by the XOR gate, E1, is masked by the XOR gates E2 and

E3. Consequently, the design produces the correct output, 00. Similar to fault masking in IC

testing, the effect of one XOR gate is masked by the effect of the other two XOR gates.

Even though the above scenario corresponds to masking the effects of faults (key-gates),

the typical scenario in IC testing occurs when the effects of the same fault cancel due to

re-convergent fan-out structures. Fault masking occurs despite the single fault assumption in

IC testing.

Goal: Insert the key-gates such that a wrong key will affect 50% of the outputs for any

input pattern. In terms of fault simulation, this goal can be stated as finding a set of faults

which together will affect 50% of the outputs for a wrong key on applying an input pattern.

Challenge: Fault simulation tools rely on the assumption of a single stuck-at fault model

(only one fault can be present at any time). Thus, existing commercial fault simulation tools

can be used to insert only one key-gate at a time. We overcome this challenge by using a

greedy iterative approach where key-gates are inserted iteratively. In every iteration, the fault

that has the potential of propagating to a maximum number of outputs dictates the location of

the key-gate to be inserted. For every iteration (except the first), the key-gates inserted at

previous iterations are provided with random wrong keys thereby emulating a multiple

stuck-at fault scenario and accounting for all previous key-gate insertions. An algorithm is

presented in the subsection 5.2.3 to perform this logic encryption.

3.4 Logic Encryption Using XOR/XNOR gates

3.4.1 Fault Impact

To insert an XOR/XNOR as a key-gate, we need to determine the location in the circuit

where, if a fault occurs, it can affect most of the outputs for most of the input patterns. To

determine this location, we use fault impact defined by (1). From a set of test patterns, we

compute the number of patterns that detect the s-a-0 fault (NoP0) at the output of a gate Gx

and the total number of output bits that get affected by that s-a-0 fault (NoO0). Similarly, we

compute NoP1 and NoO1 for s-a-1 faults.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
9

Fault Impact= (NoP0∙NoO0+ NoP1∙NoO1) (1)

By inserting an XOR/XNOR key-gate at the location with the highest fault impact, an

invalid key will likely have the most impact on the outputs (i.e., the wrong outputs appear),

indirectly enabling the logic encryption technique to reach the 50% Hamming distance metric.

3.4.2 User-defined key

A designer can use either an XOR or XNOR gate as a key-gate. However, an attacker can

easily determine the value of the key-bit. The value of the correct key-bit is ‘0’ in case of

XOR gates and ‘1’ in the case of XNOR gates. Hence, to deceive an attacker, a designer can

add an inverter at the input or output of every key-gate. If the key-bit is ‘0’, then the key-gate

structure can be either ‘XOR- gate’ or ‘XNOR-gate + inverter’. Similarly, if the key-bit is ‘1’,

then the key-gate structure can be either ‘XNOR-gate’ or ‘XOR-gate + inverter’. The

synthesis tools can bubble push2 the inverters added for logic encryption. An attacker cannot

identify which inverters are part of the original design and which are inserted for logic

encryption.

3.4.3 Algorithm to insert XOR/XNORs

Algorithm 1 greedily selects the best ‘N’ locations in a circuit to insert the XOR/XNOR

key-gates. The algorithm has two parts – location selection phase and modification phase. In

the location selection phase, the location with the highest fault impact is calculated and an

XOR gate is inserted at that location. The algorithm considers the previously inserted XOR

gates in this calculation. This phase terminates on inserting as many key-gates as that of the

length of the user-defined encryption key.

In the modification phase, the inserted XOR gates are either retained or modified to

XNOR gates. In addition, inverters are added to the output of randomly selected XOR/XNOR

gates such that the user-defined encryption key correctly unlocks the design.

Consider encrypting the C17 circuit, shown in Figure 5(a), using the above algorithm.

The NoP0, NoO0, NoP1, and NoO1 values for different nodes in the circuit, on applying 1000

random input patterns, are listed in Table 1. In addition, the corresponding fault impact values

calculated using (1) are also listed. Based on the fault impact value, gate G7 is selected as the

best location to insert the key-gate, E1, for the first iteration. Similarly, for the subsequent
2Techniques for bubble pushing are described in [24].

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
10

iterations the corresponding XOR/XNOR gates are inserted using Algorithm 1.

Algorithm 1: Fault analysis-based insertion of XOR/XNOR gates
Input: Netlist, KeySize, EncryptionKey
Output: Encrypted netlist
// Location Selection Phase
for i ← 1 to KeySize do

foreach gate j ∈ Netlist do
Compute FaultImpact;

end
Select the gate with the highest FaultImpact;
Insert XOR gate and update the Netlist;
Apply Test Patterns;

end
// Modification Phase
Generate R ; //a random number
foreach bit i ∈ R do

if i == 1 then
Insert an inverter at the o/p of corresponding key-gate;

end
end
GateType = EncryptionKey ⊕ R;
foreach bit i ∈ R do

if i == 1 then
Replace the XOR key-gate with an XNOR key-gate;

end
end

TABLE 1
Fault impact value of different nodes in C17 circuit shown in Figure 5 (a)

Node NoP0 NoO0 NoP1 NoO1
Fault
Impact

G1 193 274 150 216 85282
G2 88 88 79 79 13985
G3 89 89 85 85 15146
G4 89 89 55 55 10946
G5 304 473 85 114 153482
G6 89 89 195 195 45946
G7 193 274 267 391 157279
G8 88 88 196 196 46160
I1 150 216 193 274 85282
I2 79 79 88 88 13985
I3 85 85 89 89 15146
I4 142 199 131 173 50921
I5 112 147 85 114 26154
O1 196 196 304 304 130832
O2 195 195 305 305 131050

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
11

3.5 Logic Encryption Using Multiplexers

3.5.1 Key Idea

In MUX-based encryption, MUXes are inserted such that one input of the MUX will be

the true (original) wire in the design. The second input to the MUX, referred as the false input,

is another wire in the design. The select line of the MUX is the associated key bit. On

applying the correct key bit, the true wire is selected, retaining the correct functionality of the

design; otherwise, the functionality is modified by selecting the false wire.

The true wire can be connected to either the first or the second input of the MUX. This

enables the possibility of the correct key bit (select line) to be either 0 or 1. This leads to the

following dilemma for an attacker: is the true wire connected to the first or the second input

of the MUX? While logic encryption using XOR/XNOR gates requires additional inverters to

create the dilemma, MUXes create that dilemma inherently.

Similar to XOR-based encryption, MUX-based encryption can also be related to IC

testing principles such as fault activation, fault propagation, and fault masking.

Fault activation: In MUXes, on applying a wrong key, the false wire will be selected

instead of the true wire. However, the corruption effect will not happen when the two wires

have identical values, preventing excitation. This is different from XOR-based encryption

where fault activation is always guaranteed on applying a wrong key.

Consider the C17 circuit encrypted with one MUX (E1) as shown in Figure 6. If a wrong

key (K1=1) is applied, the value of net Y is the false value of the wire F instead of the true

value of the wire T. For the input pattern 1X110, the values on T and F are both 0’s. On

I4

I5

I3

I2

I1

O1

O2

K1
G1

G2

G3

G4

G5

G6

G7

G8

E1

G9

G10

T Y

F

Figure 6. A circuit encrypted with one multiplexer (E1).

The false wire is shown as a dotted line.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
12

applying a wrong key, a s-a-0 fault is excited at the output of G7. For the input pattern 1X100,

the values on T and F are 0 and 1, respectively. On applying a wrong key, a s-a-1 fault is

excited at the output of G7. However, for the input 1X110, the values on T and F are 0 and 0,

respectively. On applying a wrong key, no fault is excited at the output of G7.

The effects of fault-propagation and fault-masking principles on MUX-based encryption

are similar to that of XOR-based encryption. Hence, they are not repeated. However, the

effect of fault activation in these two techniques is different; XOR-based encryption always

guarantees fault activation whereas MUXes do not.

3.5.2 Fault analysis-based insertion of MUXes

Similar to XOR-based encryption, MUXes can be inserted at the output of gates whose

fault metric is the highest. The output of the selected gate will act as the true wire. However, a

designer needs to carefully select the false wire. This is because fault excitation in

MUX-based encryption will happen only if the value on the true wire is different from the

value on the false wire.

While one can select the true and false wires based on the number of input patterns for

which the value at those wires differ, such a method is computationally expensive. It requires

a designer to apply all possible input patterns or at the least it requires O(N2) comparisons

between the outputs of all the gates, where N is the number of gates in the design. Hence, we

propose the following metric to select the false wire for MUX key-gate insertion.

While the true wire is selected based on the fault-impact metric, the false wire is selected

based on another metric called Contradiction Metric3. This metric aims at maximizing the

probabilities of having different values on the true and the false wires and is given as:

Contradiction Metric= �P0,true × P1,false �+ �P1,true × P0,false � (2)

where P0,true and P1,true are the probabilities of getting a 0 and 1 on the true wire,

respectively. P0,false and P1,false are the probabilities of getting a 0 and 1 on the false wire,

respectively. Computing these probabilities requires O(N) computations for a design with N

gates [20].

In addition to this metric, the designer should also select the false wire that will not result

3To reduce delay overhead, one can constrain the algorithm to select the true and false wires from
non-critical paths.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13

in a combinational loop with the true wire. This is because combinational loops are rare in a

Algorithm 2: Fault analysis-based insertion of MUXes
Input: Netlist, KeySize, EncryptionKey
Output: Encrypted netlist
// Location Selection Phase
for i ← 1 to KeySize do
foreach gate j ∈ Netlist do
Compute FaultImpact;
end

Select the gate with the highest FaultImpact as the true wire;
ListOfFalseWires = Φ;

foreach wire j ∈ Netlist and j≠ true wire do
if CombinationLoop(j,true wire) == False then

ListOfFalseWires=ListOfFalseWires U j;
Compute Contradiction metric;
end
end

Select the wire with the highest contradiction metric as false wire
Insert MUX and update the Netlist;
Apply Test Patterns;
end
// Modification Phase
foreach bit i ∈ EncryptionKey do
if i == 1 then

Connect true and false wires to the second and first inputs of the
MUX;

end
end

TABLE 2

CONTRADICTION METRIC VALUES OF DIFFERENT NODES IN C17 CIRCUIT ON
SELECTING G7 AS THE TRUE WIRE.

 Node P0, false P1, false Contradiction metric
I1 0.5 0.5 0.5
I2 0.5 0.5 0.5
I3 0.5 0.5 0.5
I4 0.5 0.5 0.5
I5 0.5 0.5 0.5
G1 0.5 0.5 0.5
G2 0.5 0.5 0.5
G3 0.5 0.5 0.5
G4 0.5 0.5 0.5
G5 0.27 0.75 0.57
G6 0.75 0.25 0.4375
G8 0.625 0.375 0.46875

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
14

design except in the cases of flip-flops, latches, and ring oscillators. If a designer selects the

false wire such that it forms a combinational loop with the true wire, an attacker can easily

determine that the “feedback” wire is the false wire. Consequently, he can identify the

corresponding key bit.

 Consider the circuit shown in Figure 6. Here, the output of gate G7 is chosen as the true

wire and the output of gate G6 is chosen as the false wire. On an applying an input pattern

0X11X, the value of the true wire is ‘1’, while the value of the false wire is ‘0’. In fact, the

values of true and false wires differ for 16 input patterns.

3.5.3 Algorithm to insert MUXes

Algorithm 2 greedily selects the best ‘N’ locations in a circuit to insert the MUXes.

Similar to Algorithm 1, Algorithm 2 has two parts: the location selection phase and the

modification phase. In the location selection phase, the location with the highest fault impact

is calculated and it is selected as the true wire. Then, a list of wires that do not form a

combinational loop with the true wire is formed. The contradiction metric of the wires within

this list is calculated using (2). The gate with the highest contradiction metric is selected as

the false wire. A MUX is then inserted at the true wire location. The true and false wires are

connected to the first and second input of the MUX. In the modification phase, the input order

of a MUX is rearranged depending upon its key bit.

Consider encrypting C17, shown in Figure 5(a), using the above algorithm. The output of

G7 is selected as the true wire based on the fault impact values shown in Table 1. Table 2 lists

the contradiction metric of the wires that do not form a combinational loop with G7. The

output of G5, which has the highest contradiction metric, is selected as the false wire. A MUX

is then inserted at the output of G7. For the subsequent iterations the corresponding MUXes

are inserted using Algorithm 2. Note that in Table 2, the best contradiction metric achieved

for C17 is 0.57. This value is much less than the ideal value of 1.

4. RESULTS AND DISCUSSIONS

4.1 Experimental setup

The effectiveness of the proposed technique is analyzed using ISCAS-85 combinational

and ISCAS-89 sequential benchmarks. We analyzed the performance of the logic encryption

techniques on OpenSPARC T1 Processors [25]. In case of processors, not all the modules

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
15

need to be encrypted. Since the designer's valuable IP is typically in the controllers, one can

encrypt only the controllers. A side benefit of encrypting controllers is that they are usually

small (<1%) [3]. Consequently, the overhead due to encrypting the controllers will be

negligible at the system level.

We used the HOPE fault simulation tool [10] to calculate the fault impact of each gate.

We applied 1000 random input patterns to a netlist and observed the true outputs. We set the

maximum key size as 128 bits. We then calculated the fault impact for all possible faults in

the circuit. We applied valid and random wrong keys to an encrypted netlist and determined

the HD between the corresponding outputs4. The area, power, and delay overhead were

obtained using Cadence RTL Compiler.

4.2 Hamming distance analysis

The fault analysis based approach is compared with the random insertion approach [6,7]

and the corresponding results are shown in Figure 7 and Figure 8. Let us analyze the

 (a) (b)

(c) (d)

Figure 7. Hamming distance between the outputs of designs on applying the correct key and

a random wrong key: (a) Random insertion of XORs in ISCAS designs [6,7,11], (b) fault

analysis-based insertion of XORs in ISCAS designs, (c) random insertion of XORs in

OpenSPARC [6,7,11], and (d) fault analysis-based insertion of XORs in OpenSPARC units.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
16

performance of the encryption gates when they use XOR/XNOR gates (Figure 7). Figure 7(a)

and Figure 7(c) show the results of random insertion of XOR/XNOR gates in ISCAS and

OpenSPARC designs, respectively. The results of fault analysis-based insertion of

XOR/XNOR gates in ISCAS and OpenSPARC designs are shown in Figure 7(b) and Figure

7(d), respectively.

When the XOR/XNOR gates are randomly inserted (Figure 7(a) and Figure 7(c)), 50%

HD is not achieved. Fault masking is the main reason for this poor performance. The effects

of wrong keys are blocked for most of the input patterns as discussed in Section 5. However,

fault analysis based insertion (Figure 7(b) and Figure 7(d)), achieves 50% HD for all

benchmarks except for C5315, C7552, and OpenSPARC controllers. The number of outputs

in benchmarks is very high (>100) and hence it is hard to achieve 50% HD. However, the

fault analysis based approach performs well in all the other benchmarks including sequential

designs as it takes fault masking effects into account.

The slope of the lines in Figure 7 and Figure 8 indicates the performance of the random

and the fault analysis based insertions. If the line is steeper, 50% HD can be achieved with a

smaller number of additional key-gates; hence power, area, and performance overhead will be

smaller. Fault analysis based logic encryption has a smaller overhead than the random

insertion as it uses a smaller number of additional gates to achieve the target HD.

In fault analysis based logic encryption, once a design achieves 50% HD, its HD value

does not deviate more on inserting more gates. Hence, one can increase the key size without

deviating from the 50% HD mark.

Let us analyze the performance of MUX-based encryption. Figure 8(a) and Figure 8(c)

show the results of random insertion of MUXes in ISCAS and OpenSPARC designs,

respectively. The results of fault analysis-based insertion of MUXes in ISCAS and

OpenSPARC designs are shown in Figure 8(b) and Figure 8(d), respectively. In MUX-based

encryption (Figure 8), the fault is not always excited as it requires the logic value on the false

wire to be different from that on the true wire. This is the main reason why MUX-based

encryption is not able to achieve 50% HD. However, fault-analysis-based insertion (Figure

8(b) and 8(d)) of MUXes still yields a better HD than random insertion of MUXes (Figure 8(a)

and Figure 8(c)). Unfortunately, a higher number of MUXes are required than are XOR gates

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
17

to achieve the 50% HD mark. Table 3 compares the best HD (the one that is close to 50%)

and the number of key-gates required to

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
18

 (a) (b)

(c) (d)

Figure 8. Hamming distance between the outputs of designs on applying the correct key and a random

invalid key: (a) Random insertion of MUXes in ISCAS designs, (b) fault analysis-based insertion of

MUXes in ISCAS designs, (c) random insertion of MUXes in OpenSPARC units, and (d) fault

analysis-based insertion of MUXes in OpenSPARC units.

TABLE 3
THE BEST HAMMING DISTANCE ACHIEVED (CLOSE TO 50% MARK) AND THE NUMBER OF KEY-GATES

REQUIRED TO ACHIEVE THAT DISTANCE FOR DIFFERENT LOGIC ENCRYPTION TECHNIQUES

Logic Encryption C432 S510 S641 S838 S5378 C5315 C7552 S9234

Random–XOR[6,7,11] 50/110 39/67 37/104 55/28 29/128 27/124 20/126 14/118

FA-XOR 50/16 50/42 50/29 50/2 50/106 48/109 50/55 50/39

Random-MUX 43/112 50/49 30/126 50/58 27/128 14/116 13/107 11/111

FA-MUX 50/9 50/46 50/46 50/26 50/110 43/109 38/102 43/92

Logic Encryption Decoder LSU R/W FPU In Excp. Handler FPU Div. Store buffer Inst. Fetch queue Thread switch

Random–XOR[6,7,11] 25/113 21/128 29/125 15/124 26/127 20/124 14/127 12/126

FA-XOR 49/117 46/128 41/100 44/125 44/124 46/127 39/126 38/125

Random-MUX 16/128 22/128 22/126 8/127 12/127 12/125 8/127 6/125

FA-MUX 49/119 35/124 48/117 39/127 44/124 43/127 33/117 36/126

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
19

achieve that HD between the random and fault analysis based logic encryptions. It can be

seen that, in the case of XOR gates, on average, fault analysis based logic encryption achieves

the 50% HD value with a key size that is four times less than that of random insertion. In the

MUX based approach, on average, fault analysis based logic encryption achieves a HD value

which is close to the 50% mark, while the random insertion technique achieves only 25% HD.

This is because fault analysis based logic encryption identifies more effective locations to

insert the gates than the random insertion based logic encryption. The performance of the

XOR- and MUX-based insertions differ because XOR/XNOR gates always guarantee fault

activations whereas MUX-based insertion cannot guarantee fault activation.

4.3 Power, Area, and Delay Overhead

Figure 9 shows the power, delay, and area overhead of the benchmarks that are encrypted

with the number of key-gates listed in Table 3 using random insertion [6,7,11] and the

proposed fault-analysis based insertion.

In all cases shown, the following three trends are ob-served. First, the random insertion of

key-gates (XORs and MUXes) takes more overhead to achieve their highest HD. Specifically,

the fault analysis-based insertion of key-gates takes much less overhead when compared to

their random insertion counterparts.

Second, the overhead of the MUX-based method is more than that of the XOR-based

method irrespective of the encryption technique. There are two reasons for this. The first is, as

mentioned before, the MUX-based encryption technique takes more key-gates to achieve the

target HD than the XOR-based encryption technique because of non-guaranteed fault

activation. The second reason is the standard cell implementation of MUX in the 45nm library

uses NAND gate-based implementation of MUXes. This type of implementation consumes

more power, increases delay and occupies more area. The power, area and delay overhead of

MUXes would have been better if the standard cell library had a transmission gate-based

MUX.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
20

Finally, the overhead is very high for smaller designs (<2000 gates) such as C432, S510,

S641, and for some OpenSPARC units. This is because even a mere 30 additional XOR gates

required for logic encryption is on the order of the total number of gates used to construct

these small circuits. Conversely, in case of large designs (>3000 gates), the overhead for fault

analysis-based techniques (both XOR and MUX) is less than 5%. This highlights that the

fault analysis-based encryption is highly feasible and does not cause much overhead

especially for larger de-signs. Furthermore, since we are encrypting only the controllers,

which occupy only a tiny part (1% [3]), the overhead will be negligible at system level.

(a)

(b)

(c)

Figure 9. Overhead for different logic encryption techniques for a key size that results in a

HD close to 50% (a) Power overhead, (b) Delay overhead, and (c) Area overhead.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
21

4.4 Can we insert key-gates only at the outputs?

A designer can insert key-gates only at the outputs to account for fault activation,

propagation, and masking. However, in such insertions a key-gate will affect only one

output-bit. The fault analysis-based insertion technique makes use of the fan-out structures to

identify the best location within the circuit such that multiple outputs are affected by a single

key-gate. Thus, each output-bit will not be directly correlated with a key-bit. Consequently,

an attacker cannot determine the key-bit.

Fig, 10 shows the number of key-gates, which are re-quired to achieve 50% HD that are

inserted at the outputs and inside the design for different fault analysis-based insertion

techniques. One can observe that the number of key-gates required to achieve 50% HD on

using fault analysis-based insertion method is less than the number of outputs in the design.

For example, consider the design C5315. This design has 123 outputs. However, fault

analysis-based insertion of XOR/XNOR gates requires only 109 XOR/XNOR gates. Similarly,

fault analysis-based insertion of MUXes requires only 109 gates. Let us con-sider another

design C7552. This design has 108 outputs. However, fault analysis-based insertion requires

55 and 102 key-gates for the XOR and MUX approaches, respectively. This shows that a

designer can find effective places inside the circuit, not just at the outputs, to insert key-gates

such that the 50% HD metric is achieved.

4.5 Security analysis

To undermine the security offered by logic encryption, an attacker can perform the

following attacks:

Figure 10. Number of key-gates inserted at the outputs and inside the designs for

different fault analysis-based insertion techniques.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
22

1. Brute-force attack: In this attack, an attacker tries all possible key combinations until

he finds the correct key. However, increasing the key size will make it harder for an attacker

to retrieve the secret key.

2. Correcting the wrong output bits: In this attack, an attacker can correct the wrong

output bits by inverting them. To perform this attack, he has to know which out-put bits are

wrong. The number of output-bit combinations that the attacker has to consider for every

input combination dictates the ambiguity created for the attacker. This is analogous to

traditional cryptography, where the key size dictates the ambiguity for an attacker. Table 4

shows the number of output combinations that an attacker is forced to consider on an

encrypted netlist for different logic encryption techniques. It can be seen that fault-analysis

based logic encryption results in more ambiguity for an attacker than random insertion.

3. Key-gate removal attack: The attacker can attempt to remove the key-gates from the

encrypted netlist and replace them randomly with a buffer or an inverter. Consider the

following case from an attacker’s perspective. An “XOR-gate+inverter” is inserted into the

design for a key-bit of value ‘1’. On seeing this XOR-gate connected to a key input, an

attacker will recognize that the XOR-gate is added for logic encryption. However, on seeing

the inverter, he might not know whether it is part of the original design (resulting in correct

TABLE 4
NUMBER OF OUTPUT COMBINATIONS THAT AN ATTACKER IS FORCED TO CONSIDER ON AN

ENCRYPTED NETLIST FOR VARIOUS TYPES OF KEY-GATES AND LOGIC ENCRYPTION TECHNIQUES.
(A) ISCAS CIRCUITS AND (B) OPENSPARC CONTROLLERS

 (a)
Logic encryption C432 S510 S641 S838 S5378 C5315 C7552 S9234

Random–XOR [6,7,11] 35 1.7E+03 2.7E+11 8.2E+08 5.3E+58 2.5E+30 4.9E+22 6.7E+42

FA-XOR 35 1.7E+03 1.1E+12 1.2E+09 2.3E+67 7.4E+35 2.5E+31 9.1E+73

Random-MUX 35 1.7E+03 3.7E+10 1.2E+09 5.2E+56 1.8E+21 8.8E+17 9.5E+36

FA-MUX 35 1.7E+03 1.1E+12 1.2E+09 2.3E+67 2.4E+35 1.7E+30 9.1E+72

(b)

Logic encryption
Decoder LSU

R/W

FPU

In

Excp.

Handler

FPU

Div.

Store

buffer

Inst. Fetch

queue

Thread

switch

Random–XOR[6,7,11] 1.1E+22 2.9E+44 3.0E+35 5.9E+32 2.5E+50 5.6E+34 6.4E+43 1.7E+41

FA-XOR 8.1E+26 7.7E+59 5.0E+39 5.4E+52 3.2E+60 1.7E+48 1.8E+72 9.6E+74

Random-MUX 7.8E+16 3.8E+45 8.8E+30 3.1E+21 1.1E+32 2.8E+25 2.4E+30 1.7E+25

FA-MUX 8.1E+26 1.9E+56 4.3E+40 2.7E+51 3.2E+60 5.9E+47 3.7E+68 7.3E+73

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
23

key-bit of value ‘0’) or added for logic encryption (resulting in correct key-bit of value ‘1’).

Thus, this creates a dilemma to an attacker. This dilemma is further exacerbated by the

synthesis tool as it also uses inverters (not for the purpose of logic encryption) while

synthesizing a design. In case of MUX-based encryption, the attacker can try to connect the

true wire with the output. But, he does not know which wire is the true wire.

4. Retrieving good input-output pairs: An attacker can buy a working IC from the

market. Thereby, he will have access to good input-output pairs of the IC. However, this does

not undermine the strength of the proposed logic encryption technique. This is because of

the following reason. In the logic encryption, the fault impact is calculated by considering not

only the primary inputs and outputs but also considering each flip-flop is considered as a

pseudo input and as pseudo output. Thus, in the context of logic encryption “good

input-output pairs” include: (1) primary input-primary output pairs, (2) primary input-pseudo

output pairs, (3) pseudo input-primary output pairs, and (4) pseudo input-pseudo output pairs.

After manufacture-testing and validation, the designer disables the scan test access port of the

IC [28]. Disabling the scan access port prevents the access to the flip-flops. Consequently, an

attacker cannot access the pseudo-inputs and pseudo-outputs. Thus, an attacker on buying a

functional IC does not have access to primary input-pseudo output pairs, pseudo

input-primary output pairs, and pseudo input-pseudo output pairs.

4.6 Logic Encryption and PUFs

The security of any logic encryption technique can be improved by using Physical

Unclonable Functions (PUFs) by assigning unique unlocking keys to each instance of an IC

[6,7,11]. PUFs are circuits that exploit inherent physical disorders due to process variations to

produce a chip-dependent output on applying an input. The technique works as follows: The

designer embeds a symmetric key cryptographic module and a PUF circuit along with the

encrypted module. Post-fabrication, the designer applies an input to the PUF and obtains an

output. Simultaneously, the output of the PUF is fed into the cryptographic module. This

output is used as the key for the cryptographic module. This key is burnt into the fuses and

thus remains non-volatile. Once the designer obtains the output from the PUF, the PUF is no

longer accessible (one can use fuses to shut down the access).

The designer uses the output of the PUF as the key to cryptographic module. He uses the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
24

secret key to unlock the encrypted module as the plaintext to the cryptographic algorithm and

computes the ciphertext. This ciphertext is then fed into the target chip. Inside the target chip,

the ciphertext is fed into the cryptographic module which uses the PUF’s output as the secret

key. The output of the cryptographic module will then be the secret key to unlock the

encrypted design. This is fed to unlock the encrypted module. Since the PUF’s output will be

different on different chips, the ciphertext of one chip cannot be used to unlock the design in

another chip.

4.7 Verification of Logic Encryption Outputs

If a module produces wrong outputs for a few input patterns, an attacker can still use the

module by excluding those input patterns. For example, if a processor produces wrong

outputs for just 2-3 instructions, an attacker can recompile his program by excluding those

instructions from the instruction set. Thus, as highlighted in [11], it becomes necessary to

produce wrong outputs for many input patterns for a random, wrong key.

In general, a designer cannot tune a logic encryption to produce wrong outputs only for

certain inputs by assuming that the attacker will use only those inputs. This is because he does

not have access to the attacker’s input-set. Thus, a defender has to perform logic encryption

based on generic input patterns.

4.8 Limitations

We generated random input patterns to calculate the fault impact of a node in a design.

Although this does not cover the entire input space, it gives a designer a rough estimate of the

impact of the fault at that node. However, one can also develop a systematic algorithm to

calculate the fault impact rather than applying random input patterns by using the proposed

fault metric as a basis.

Fault impact metric is only a heuristic and does not guarantee one to achieve 50% HD.

However, it enables to reach 50% HD as can be seen in Figure 7, Figure 8 and Figure 12.

Unlike cryptographic modules, the designs in the benchmark suite and in Open SPARC

processor do not have a regular structure. Thus, one cannot guarantee 50% HD because of the

fault masking effects described in Section 5.1.

In this work, only one key-gate is inserted per iteration. Such insertion may be

computationally expensive for large designs. This method took two hours to encrypt the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
25

C7552 circuit. However, one can partition the circuit into multiple segments and encrypt each

of the segments individually to achieve the global objective of 50% HD.

One can ensure that brute force effort is required to retrieve the secret key by formally

proving the capability of the logic encryption technique. However, such a proof will be design

dependent. Generating such formal proofs for every design may not be practical. The

proposed techniques are design independent and increase the effort for an attacker.

5. RESOURCE-CONSTRAINED LOGIC ENCRYPTION

In certain scenarios, a designer can only offer a limited power, area, or delay overhead for

logic encryption. Hence, it is necessary to identify the security offered in relation to

subsequent power, area, and delay overheads.

(a)

(b)

(c)

Figure 11. Hamming distance achieved for different insertion mechanisms when the allowed

overhead for logic encryption is 5%. (a) Power constrained, (b) delay constrained, and (c)

area constrained. The numbers on top of the bar shows the number of key-gates inserted.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
26

In constrained insertion, instead of inserting a pre-defined number of key-gates, the

designer inserts key-gates until the encrypted design exceeds the allowed power, area, or

delay limit. A designer can insert a key-gate at a location and calculate the power/area/delay

overhead due to that key-gate. If the overhead is acceptable, he can insert the key-gate at that

location. If not, he can skip that location. Such a method will be computationally expensive.

Hence, we perform the resource-constrained logic encryption in the following way.

In every iteration, after inserting a key-gate, the de-signer calculates the overhead for

encryption. If this overhead is within the allowable limit, then he inserts an additional

key-gate and repeats the same process until the limit is exceeded. To perform this analysis, we

follow the same insertion algorithms listed in Sections 5 and 6, and we stop the insertion once

the overhead exceeds a pre-defined limit. As an instance, we chose a limit of 5%.

 Figure 11 shows the HD achieved and the number of key gates inserted for different

insertion techniques when a designer is constrained to spend only 5% power, delay, and area

overhead, respectively for logic encryption. One can make the following three observations.

First, for a given overhead, the HD achieved by the fault analysis-based method is

typically higher than that of the random method. This is because the fault analysis-based

insertion technique accounts for fault activation, propagation, and masking effects. In case of

delay-constrained insertion (Figure 10(b)), inserting a MUX increases the delay by more than

5% and thus, no MUX was inserted for some of the designs.

Second, the HD achieved with XOR/XNOR gates as key-gates is higher than with

MUXes as key-gates be-cause XOR/XNOR gates always guarantee fault activation. In

addition, since the power consumption, delay, and area of XOR/XNOR gates are smaller than

that of MUX, a designer is able to insert a higher number of XOR/XNOR gates than MUXes

for a given budget.

Finally, in the case of large designs a designer is able to insert more key-gates since the

percentage overhead is proportional to the size of the design. Thus, for such designs the

inserted key-gates were enough to achieve the 50% HD mark with the fault-analysis

technique. On the other hand, in the cases of random insertions, 50% HD was not guaranteed.

This shows that the power, delay or area overhead spent by a designer on logic encryption

would be ineffective if he follows the random insertion technique. However, a designer can

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
27

effectively reap the benefits of logic encryption on using a fault-analysis based insertion

technique.

6. RELATED WORK

Logic encryption techniques can be broadly classified into two types—sequential and

combinational. In sequential logic encryption, additional logic (black) states are introduced in

the state transition graph [3, 11, 12]. The state transition graph is modified in such a way that

the design reaches a valid state only on applying a correct sequence of key bits. If the key is

withdrawn, the design, once again, ends up in a black state. However, the effectiveness of

these methods in producing a wrong output has not been demonstrated.

In combinational logic encryption, XOR/XNOR gates are introduced to conceal the

functionality of a design [6,7]. Usually, one of the inputs in these inserted gates serves as a

‘key input’ which is a newly added primary input. One can configure these gates as buffers or

inverters using these key inputs.

CLIP introduces process variation sensors into a circuit [5]. Post-fabrication, special test

vectors are applied to these sensors to determine the impact of process variation. Based on

this impact, the designer configures these sensors such that correct outputs are produced. A

wrong configuration results in a wrong output. The advantage of this technique is that every

chip inherently has a unique decryption key. However, the maximum HD between the outputs

of the correct and wrong configurations achieved by this technique is only 18%.

At the micro-architectural level, processor encryption uses the logic encryption

capabilities to selectively en-crypt units of a microprocessor [27], thereby enhancing the

capabilities of a Trojan detection technique to detect Trojans. It randomly inserts the

key-gates into the design, i.e. it uses the algorithm proposed in [6,7]. It dynamically loads and

unloads the key to make a unit to function at will. The proposed techniques can aid processor

encryption to insert key-gates within a microprocessor unit such that an incorrect key results

in an incorrect output.

Apart from sequential and combinational elements, memory elements are also inserted

into the design [8]. The circuit will function correctly only when these elements are

configured/programmed correctly. However, the introduction of memory elements into the

circuit will incur significant performance overhead.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
28

Techniques such as watermarking and passive metering are also proposed to detect IC

piracy. In watermarking techniques, a designer embodies his/her signature into the design

[13]. During litigation, the designer can reveal the watermark and claim ownership of the

IC/IP. Watermarks are constructed by adding additional states to the finite state machine of

the design, adding secret constraints during high-level [14], logical, or physical synthesis [15]

steps.

In passive metering techniques, a unique device ID for every IC is formed leveraging

process variations [3]. Physical Unclonable functions are leveraged to produce such IDs

[17--19]. If a user pirates an IC, he/she will be caught by tracking the device ID.

Unfortunately, both watermarking and passive metering techniques can only detect piracy but

not prevent it; only logic encryption techniques can prevent IC piracy.

7. CONCLUSION

Fault analysis based logic encryption achieves 50% HD between the correct and the

corresponding wrong outputs when an invalid key is applied to the design. While we used

only one of the cryptographic criteria namely, HD, there are other criteria such as Avalanche

criterion, Strict Avalanche criterion, and Bit independent criterion [20]. Cryptographically

strong designs (for instance, S-boxes, the primitives of Advance Encryption Standard [21])

have to satisfy all these criteria. Evaluation of a logic design against these criteria is

computationally complex as it requires applying all possible input combinations. Thus, these

criterion cannot be directly applied to logic design where applying all possible input patterns

will be computationally inhibitive. To overcome this problem, cryptographic researchers have

to develop new techniques to evaluate the security of logic encryption.

In this work, we took the average HD as the assessment criterion. To overcome the

problems of averaging, one can perform insertion by assigning weights based on the number

of inputs that affect the key. Since we have used a single fault simulator, we developed an

iterative algorithm to determine the fault impact in the presence of fault masking. Logic

encryption can also be performed non-iteratively by using a fault simulator that supports

multiple stuck-at fault models.

8. REFERENCES
[1] KPMG. (2006) Managing the risks of counterfeiting in the information technology. [Online].

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
29

www.agmaglobal.org/press_events/press_docs/Counterfeit_WhitePaper_Final.pdf

[2] SEMI. (2008) Innovation is at risk as semiconductor equipment and materials industry loses up to $4 billion

annually due to IP infringement. [Online]. www.semi.org/en/Press/P043775

[3] Y.M. Alkabani and F. Koushanfar, "Active hardware metering for intellectual property protection and

security," in Proc. of USENIX Security, pp. 291-306, 2007.

[4] Defense Science Board (DSB) study on High Performance Microchip Supply. [Online].

http://www.aoq.osd.mil/dsb/reports/ADA435563.pdf

[5] W.P. Griffin, A. Raghunathan, and K. Roy, “CLIP: Circuit Level IC Protection Through Direct Injection of

Process Variations”, IEEE Transactions on Very Large Scale Integration Systems, vol. 20, no. 5, pp. 791-803,

2012.

[6] J.A. Roy, F. Koushanfar, and I.L. Markov, "EPIC: Ending Piracy of Integrated Circuits," in Proc. of Design,

Automation and Test in Europe, pp. 1069-1074, 2008.

[7] J.A. Roy, F. Koushanfar, I.L. Markov, "Ending Piracy of Inte-grated Circuits," Computer, vol.43, no.10,

pp.30-38, 2010.

[8] Baumgarten, A. Tyagi, and J. Zambreno, "Preventing IC Piracy Using Reconfigurable Logic Barriers," IEEE

Design & Test of Computers, vol. 27, no. 1, pp. 66-75, 2010.

[9] J. Rajendran, Y. Pino, O. Sinanoglu, R. Karri, “Security analysis of logic obfuscation”, in the Proceedings of

the Design Automation Conference, pp. 83-89, 2012.

[10] H.K. Lee and D.S. Ha, "HOPE: An Efficient Parallel Fault Simulator for Synchronous Sequential Circuits,"

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 15, no. 9, pp. 1048-1058,

1996.

[11] R.S. Chakraborty and S. Bhunia, "HARPOON: An Obfuscation-Based SoC Design Methodology for

Hardware Protection," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 28,

no. 10, pp. 1493-1502, 2009.

[12] R.S. Chakraborty and S. Bhunia, "Security against hardware Trojan through a novel application of design

obfuscation," in Proc. of the IEEE International Conference on Computer-Aided Design, pp.113-116, 2009

[13] A. B. Kahng, J. Lach, W.H. Mangione-Smith, S. Mantik, I.L. Markov, M. Potkonjak, P. Tucker, H. Wang, G.

Wolfe, "Watermarking techniques for intellectual property protection," in Proc. of IEEE/ACM Design Automation

Conference, pp.776-781, 1998.

[14] F. Koushanfar, I. Hong, M. Potkonjak, "Behavioral Synthesis Techniques for Intellectual Property

Protection", ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 3, pp. 523-545, 2005.

[15] A. B. Kahng, S. Mantik, I.L. Markov, M. Potkonjak, P. Tucker, H. Wang, G. Wolfe, "Robust IP

Watermarking Methodologies for Physical Design", in the Proceedings of the Design Automation Conference, pp.

782-787, 1998.

[16] Federal Information Processing Standards Publication 197. (2001) Specification for the Advanced

Encryption Standard (AES).

[17] G.E. Suh and S. Devadas, "Physical Unclonable Functions for Device Authentication and Secret Key

Generation," in Proc. of the IEEE/ACM Design Automation Conference, pp. 9-14, 2007.

[18] J.W. Lee et al., "A technique to build a secret key in integrated circuits for identification and authentication

applications," in Proc of Symposium on VLSI Circuits, pp. 176- 179, 2004.

[19] K. Lofstrom, W.R. Daasch, and D. Taylor, "IC identification circuit using device mismatch," in IEEE

International Solid-State Circuits Conference, 2000, pp. 372-373.

[20] M. Bushnell and V. Agarwal, Essentials of Electronic Testing for Digital, Memory, and Mixed-Signal VLSI

Circuits. Boston: Kluwer Academic Publishers, 2000.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
30

[21] H.M. Heys and S.E. Tavares, "Avalanche characteristics of substitution-permutation encryption networks"

IEEE Transactions on Computers, vol. 44, no. 9, pp. 1131-1139, 1995.

[22] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in the Proceedings of CRYPTO, pp. 388–397,

1999.

[23] K. Tiri and I. Verbauwhede, “A logic level design methodology for a secure DPA resistant ASIC or FPGA

implementation,” in the Proc. of Design Automation and Test in Europe, pp. 246–251, 2004.

[24] D.M.Harris and S.L. Harris, “Digital design and computer architecture,” Morgan Kaufmann, 2013.

[25] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan, and Ke Yang,

“On the (im)possibility of obfuscating programs”, Journal of ACM, vol.2 no.6, pp. 1-48, 2012.

[26] Sun Microsystems, “OpenSPARC T1 Processor," [Online].

http://www.opensparc.net/opensparc-t1/index.html.

[27] J. Rajendran, A.K. Kanuparthi, M. Zahran, S.K. Adepalli, G.Ormazabal, R. Karri, “Securing Processors

Against Insider Attacks: A Circuit-Microarchitecture Co-Design Approach,” IEEE Design & Test Magazine, vol.

30, no. 2, pp. 35-44, 2013.

[28] ARM, “i.MX35 Applications Processors for Industrial and Consumer Products,”

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=i.MX357&fpsp=1&tab=Documentation_Tab

[29] J. Rajendran, H. Zhang, C. Zhang, G.S. Rose, Y. Pino, O. Sinanoglu and R. Karri, “Fault Analysis-based

Logic Encryption”, accepted in IEEE Transactions on Computers.

[30] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Applying IC Testing Concepts to Secure ICs”, in the

Proceedings of Government Microcircuit Applications and Critical Technology, March 2012

[31] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Fault-analysis based Logic Encryption”, in the

Proceedings of IEEE/ACM Design Automation and Test in Europe, March 2012, pp. 953-958

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
31

LIST OF ACRONYMS
CLIP Circuit-Level Intellectual property Protection
F False wire
FA Fault Analysis
FPU Floating Point Unit
FSM Finite State Machine
HD Hamming Distance
IC Integrated Circuits
ID Identification
IP Intellectual Property
ISCAS International Symposium on Circuits And Systems
LSU Load Store Unit
MUX Multiplexer
NoO0 total number of output bits that get affected by that s-a-0 fault
NoP0 Number of patterns that detect the s-a-0 fault
NoP1 Number of Patterns that detect the s-a-1 fault
PUF Physical Unclonable Functions
P0,false Probability of getting a 0 on the false wire
P0,true Probability of getting a 0 on the true wire
P1,false Probability of getting a 1 on the false wire
P1,true Probability of getting a 1 on the true wire
RTL Register Transfer Level
R/W Read/Write
s-a-0 stuck-at-0
s-a-1 stuck-at-1
SPARC Scalable Processor ARChitecture
T True wire

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
32

	2.3 Contributions
	Logic encryption: a fault analysis perspective
	3.4.3 Algorithm to insert XOR/XNORs
	3.5.1 Key Idea
	3.5.2 Fault analysis-based insertion of MUXes
	3.5.3 Algorithm to insert MUXes
	4.1 Experimental setup
	4.3 Power, Area, and Delay Overhead
	4.4 Can we insert key-gates only at the outputs?
	4.5 Security analysis
	4.6 Logic Encryption and PUFs
	4.7 Verification of Logic Encryption Outputs
	4.8 Limitations
	5. RESOURCE-CONSTRAINED LOGIC ENCRYPTION
	6. RELATED WORK
	7. CONCLUSION
	8. REFERENCES
	LIST OF ACRONYMS

